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Multilayer perceptrons may learn simple rules quickly
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Zero-temperature Gibbs learning is considered for a connected committee machine withK hidden units. For
largeK, the scale of the learning curve strongly depends on the target rule. When learning a perceptron, the
sample sizeP needed for optimal generalization scales so thatN!P!KN, whereN is the dimension of the
input. This holds even for a noisy perceptron rule if a new input is classified by the majority vote of all students
in the version space. When learning a committee machine withM hidden units, 1!M!K, optimal generali-
zation requiresAMKN!P. @S1063-651X~98!03908-7#

PACS number~s!: 87.10.1e, 05.90.1m, 64.60.Cn
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Supervised learning in neural networks has been stu
from a wide range of theoretical perspectives. In statis
one may obtain bounds on the learning behavior that indic
that the sample size should be on the order of the VC dim
sion of the network to enable good generalization@1#. Under
some regularity assumptions, one may use information g
metric ideas to determine the asymptotics of the learn
curve in the limit where the number of training examples
large @2#. This yields that the sample size should be on
order of the number of free parameters in the architect
and for feedforward networks with threshold units this is t
same as the VC dimension~up to a factor that is at mos
logarithmic! @3#. In particular, both approaches suggest t
the sample size must be increased with the capabilities o
learner and that this is quite independent of the rule that i
be learned.

In statistical mechanics one has to make rather deta
assumptions about the learning problem, but can in turn
culate the learning behavior exactly in the thermodynam
limit. While this has given rise to important qualifications
the above theories, e.g., the discontinuous transition to
fect generalization in Ising networks@4,5#, the above scaling
of the learning curve has to date been observed in statis
mechanics as well. Indeed, generic arguments that the s
of the learning curve must be set by the number of f
parameters in the thermodynamic limit have been brou
forth in @6#.

However, in some practical applications, the generali
tion properties of feedforward networks have been found
be startlingly good in view of these theoretical expectatio
@7,8#. The purpose of this paper is to point out that for
specific multilayer network, the fully connected committ
machine, the scale of the learning curve depends strongl
the target rule.

This machine is characterized byK weight vectorsJi
PRN, uJi u51, and given anN-dimensional inputj it com-
putessJ(j)5sgn@( i 51

K sgn(Ji
Tj)#. We shall consider a situ

ation where the target rule or teacher is a simpler commi
machinesB(j) with M weight vectorsBl and M,K. The
high-temperature limit of a related scenario (M51, K53,
binary synapses! has been discussed in@9#. Here we focus on
the caseM!K!N since this not only is technically simple
than finiteK but separates the scales of having a sample
of, e.g.,O(N) or O(KN). In real world applications the ar
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chitecture of the student will make it impossible to impl
ment the teacher perfectly and such a situation shall be m
eled by considering a noisy teacher.

We consider Gibbs learning at zero temperature since
can be shown to converge, for any teacher, to the opti
student in the limit of large sample size@10#. A well known
strategy in machine learning is to combine the predictions
different classifiers. Instead of just picking a student from
Gibbs ensemble, we thus also consider classifying a n
input by the output of the majority of the students in t
Gibbs ensemble. Under suitable assumptions on pr
~which do not hold in the present case!, this is the Bayes
algorithm @11#.

More formally, let V be the set of inputs andA be a
probability distribution on V3$21,1% representing the
~stochastic! teacher. For a binary functionf P$21,1%V

we may then define the generalization erroreg( f )
5^u„2s f (j)…& (j,s) as the probability with respect toA that
sÞ f (j) for an input/output pair (j,s). LetF, a set of binary
functions, be the class of students andm a probability distri-
bution onF, representing our confidence in the generaliz
tion ability of a student. Denote byr (j,s)5^u„s f (j)…& f the
probability with respect tom thats5 f (j). We then obtain a
classifier that averages over all students by settinghm(j)
5sgn@r (j,1)2r (j,21)#. The generalization error of this
classifiereensand the average generalization erroresmp com-
mitted by simply sampling fromm are then

esmp5^eg~ f !& f5^r ~j,2s!&~j,s! ,

eens5eg~hm!5^u„2r ~j,2s!21…&~j,s! . ~1!

Sinceeens<^2r (j,2s)u„2r „j,2s)21…& (j,s) , one haseens
<2esmp and it is straightforward to construct unusual situ
tions~for anyesmp<

1
2 ) where the inequalities are tight. How

ever, below we shall encounter cases whereeens is much
smaller thanesmp and even smaller than the generalizati
error of the best student in the support ofm.

Let T be a training set ofP pairs (jn,sn) picked inde-
pendently fromA and assume thatm is such that any studen
f picked fromm lies in the version space, i.e.,f has minimal
training error(nu„2sn f (jn)…. Then esmp will converge to
emin , the minimal generalization error attainable inF, asP
→`. However, only in realizable casesemin50 does this
2298 © 1998 The American Physical Society
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imply eens→emin . If the optimal student is unique, howeve
under weak assumptions onF and the input distribution, the
version space will shrink to a point for largeP and then
trivially eens→esmp→emin .

In our present case the teacherA is given by the noisy
committee machine

h* sB~gj1A12g2h!. ~2!

The components of the input vectorj and of the~input! noise
vectorh shall be picked independently from the normal d
tribution. A second source of~output! noise is due toh*
P$21,1%, which equals 1 with probabilityg* . Thus, forg
5g* 51 the teacher is deterministic and the learning pr
lem realizable and forg50 or g* 5 1

2 the teacher is random
For zero-temperature Gibbs learningm is given by the

uniform distribution on the parameters (J) of the functions in
version space. Thus the key quantity to consider is the
sion space volumeV(T ). Note that we shall consider only
sample sizeP for which zero training error is achievable
Hence the calculation of the replicated version space volu
for largeN leads to the following extremal problem:

1

N
ln^Vn~T !&T5extr

q,R

P

N
ln Gr

~n!~q,R!1 ln Gs
~n!~q,R!. ~3!

Here the matrixq5(qi j
ab) is given by the overlaps of the

weight vectors of the students andR5(Rli
a ) by the overlaps

between these and the weight vectors of the teacher.
assume that the teacher has orthonormal weight vectors
then the entropy termGs

(n) is

Gs
~n!5detS 1 RT

R q D 1/2

. ~4!

The solution of Eq.~3! will require symmetry assumption
about the extremal values ofq and R. Subject to such an
assumption the determinant inGs

(n) may be evaluated by
recursively applying the following relations for block matr
ces: det(c

a
d
b)5det a det(d2ca21b) and detMk(u,v)

5det(u2v)k21det@u1(k21)v#. Here Mk(u,v) denotes a
square matrix withk diagonal entriesu and off-diagonal en-
tries v. For the more complicated parametrizations ofq and
R the calculations become tedious and are best left to a c
puter program capable of symbolic algebra.

The energy termGr
(n) in the extremal problem~3! is given

by

Gr
~n!5K 2u~h*Y!)

a51

n

u~Z a!L
Yl ,Z

i
a ,h*

,

Z a5K21/2(
i 51

K

sgn~Zi
a!,

Y5M 21/2(
l 51

M

sgn~Yl ! if M.1,

Y5Y1 if M51. ~5!
-

-
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The Zi
a and Yl are zero mean Gaussian, with covarianc

^Zi
aZj

b&5qi j
ab , ^YlZi

a&5gRli
a , and ^YlYk&5d lk . For all the

parametrizations ofq and R we shall consider, one ma
show as in@12# that the joint distribution ofZ a and Y is
Gaussian in the limitK→` whenM is equal to 1 or whenM
is large as well. Since the covariances of theZ a andY are
readily calculated from those ofZi

a andYl this greatly sim-
plifies Gr

(n) .
Combining Eqs.~1! and ~3! allows us to calculate the

generalization behavior: Almost by definition the typica
with respect to training sets, value of thenth moment of the
random variabler (j,s) is given by Gr

(n) evaluated at the
typical values ofq,R. These may be obtained from the e
tremal condition in Eq.~3! for smalln. Consequently,esmp is
given by

12g* 1
2g* 21

p
arccosr ~6!

for r5Re /Ave. HereRe5^YZ a& andve5^Z aZ a&. In con-
trast to esmp, the generalization error of the ensemble d
pends on the geometry of the version space. Within a rep
symmetric ansatz one finds

Gr
~n!5K 2HS Reh* x

Aqe2Re
2D HSA qe

ve2qe

xD nL
x,h*

. ~7!

The distribution ofx is normal,qe5^Z aZ b&, and for the
typical values of the order parameters~7! equals
^r (j,s)n& (j,s) . As pointed out in@13#, it is thus easy to
evaluate^F„r (j,s)…& (j,s) if F is, or can arbitrarily well be
approximated by, a polynomial. Since this holds for theu
function in Eq. ~1!, a simple calculation yields thateens is
given by Eq.~6! for r5Re /Aqe. However, already one ste
of replica symmetry breaking would yield a much more co
plicated right-hand side of Eq.~7!. It thus seems very diffi-
cult to perform a similar calculation ofeens when replica
symmetry is broken.

We first considerM51. In this case a site symmetri
parametrization ofq and R should be sufficient and we se
Rli

a 5r a/AK andqi j
ab5pab/K1d i j q

ab. The scaling of the or-
der parameters withK is such that the contribution ofr a and
pab to the covariance matrix ofZ a andY stays finite in the
large K limit. The best achievable generalization error
given by Eq.~6! for r5g.

The replica symmetric theory will be sufficient forP
5ãN, when the sample size is an infinitesimal fraction
the number of free parameters. The resulting power laws
the generalization error asã→` are summarized in Table I
Only in the noiseless case doesesmp decay toemin . For iden-
tical values ofemin , the asymptotic value ofesmp is higher in
the case of output noise than for input noise. The gener
zation error of the ensemble becomes minimal in all cas
For input noise, the 1/ã decay of the ensemble quite remar
ably equalizes the decay in the Bayesian algorithm tha
optimized for this specific class of teachers@14#.

The great difference between the ensemble and samp
may be explained quite simply. LetB̂5K21/2( iJi be the
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~rescaled! average weight vector of a typical student in ve
sion space. Then in the limituB̂u→` the output of the large
committeesJ is equal to the perceptron with weight vectorB̂

on almost all inputs. Further,B̂ becomes parallel to the
teacher for largeã. However, only in the noiseless case do
the length ofB̂ diverge~as ã1/3). This length influences the
performance of a single student but is immaterial for
ensemble since the specialized overlapsqab are zero.

We next consider the more conventional scaling of
sample sizeP5aKN. If there is no noise, the generalizatio
error vanishes. In the noisy cases up to a critical point
generalization behavior is the same as forã→`. Sinceeens
5emin the ensemble agrees with the noiseless teacher o
most all inputs but, in contrast to the noiseless teacher, it
zero training error. With increasinga the version space
shrinks rapidly and above a criticala specialized correla-
tions between the students emerge, i.e.,qab50 no longer
holds. While this can be seen in the replica symme
theory, a correct description requires the breaking of rep
symmetry. The critical valueaRSB as function of the noise is
shown in Fig. 1. At the transitionesmp increases and, due t
the specialized correlations, the error of the ensemble
increase as well. For largea the version space shrinks to
point (qab→1) and thuseens→esmp. The asymptotic value
of esmp on this scale is higher than the one found for largeã.
The generalization error will decrease again when the tr
ing set size is on the order of the storage capacity of
student, that is, on the order ofAln KKN @15#.

For large but finiteK the generalization performance wi

TABLE I. For largeã the generalization error decays toemin as

dã2k for the values ofk andd given in this table. The value ofc1

is c152*2`
0 dx lnH(x).

Model k d

no noise esmp 1/3 (p22)1/3

A2p5/6c1
1/3

no noise eens 2/3 AA22c1Ap~p22!1/6

2p5/12c1
1/6

input noise esmp 0 1
p

arccosg22emin

input noise eens 1 1
4g

output noise esmp 0 no explicit form

output noise eens 1/2 no explicit form
s

e
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be well described by the aboveã theory as long asP
,aRSBKN. So for finiteK only a close to minimal generali
zation error is achievable in this phase. Nevertheless,
question arises whether the remarkable generalization pe
mance for small sample sizes occurs only ifM51. Indeed,
the analysis of, e.g.,M53 cannot be obtained by a simp
extension from the perceptron case. If one-third of the h
den units in the student have small overlaps with the first u
in the teacher, this will reproduce only the hidden fieldB1

Tj,
but not its sign.

It is not necessary, however, that all of the hidden units
the student specialize on some unit in the teacher. Le
assume that for each teacher unit there arel* units in the
student that have specialized on it. The scale ofl* is set by
the requirement that the field produced by the speciali
units should have the same order of magnitude as the e
field (Z a), that is,l* 5lAK/M . This in turn suggests tha
the learning curve should exhibit an interesting behav
when the size of the training set scales asP5âAKMN. Due
to the broken site symmetry the calculations are rather
volved and we shall consider only the noiseless case in
limit M→` but M!K.

Settingh( i )5 d i /l* e, so that forh( i )<M the i th hidden
unit of the student has specialized of theh( i )th teacher unit,
we arrive at the parametrization of the overlap matrices

Rli
a 5H r s

a/M1d lh~ i !Rs
a if h~ i !<M

r u
a/K if h~ i !.M ,

qi j
ab5H ps2

ab/M1dh~ i !h~ j !ps1
ab1d i j qs

ab if h~ i !,h~ j !<M

psu
ab/AMK if h~ i !<M,h~ j !

pu
ab/K1d i j qu

ab if M,h~ i !,h~ j !.
~8!

The replica symmetric theory will be sufficient for the abo
scaling of the training set size. Then the extremal probl
~3! has a solution withqu

ab50 and where the following quan
tities are of order 1/AKM :

FIG. 1. Value ofa at which replica symmetry breaks. The upp
curve is for input noise, the lower one for output noise. One step
RSB was considered, at the transition the breakpoint parametem
decreases from 1, and one of the two values ofqab is still 0 and the
other is close to 1.
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11pu
aa2pu

ab , pu
ab2~r u

a!2, psu
aa2psu

ab ,

psu
ab2r u

a~r s
a1Rs

a!, ps1
ab1ps2

ab2~r s
a1Rs

a!2, qs
ab. ~9!

These relations imply that the average weight vector of
teacher, the average of the specialized units, and the ave
of the unspecialized units in the student are parallel. Fur
one finds

O~1/M !512ps1
aa1l* ~ps1

aa2ps1
ab1ps2

aa2ps2
ab!,

O~AM /K !5ps1
aa2~Rs

a!2, O~AM /K !5ps1
aa2ps1

ab .
~10!

With these relations the typical value of the version sp
volume can be obtained from

1

AKMN
^ ln V~T !&T5extr

Rs ,l
âGr1

l

2
ln~12Rs

2!, ~11!

whereGr5(]/]n)Gr
(n)

un50 andGr
(n) is given by Eq.~7! for

Re52~r 1l arcsinRs!/p,

qe52@r ~r 12lRs!1l2arcsinRs
2#/p,

ve5qe1122/p. ~12!

The value ofr 5r u
a1lr s

a is given by the constraint

2~r 1lRs!
]Gr

]qe
1

]Gr

]Re
50. ~13!
ca
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For small values ofâ the above extremal problem has th
unspecialized solutionr 51,l50. The generalization error is
the same as forM5K in this unspecialized phase@16#. How-
ever, above a critical sample sizeâ'5.17, the value ofl
increases from zero and it diverges with growingâ. The
value ofRs is close to one already at the transition. Asym
totically, one finds

esmp5
21/4~p22!1/4

pAc2

Aln â

â
, ~14!

wherec252*dxH(x)ln H(x). The ensemble improves onl
marginally on this performance, the decay in its generali
tion error being a factor 1/A2 faster. This is related to the
fact that r .0 for finite â. While this improves the perfor-
mance of a single student, it creates a deviation from
teacher that is common to~almost! all students in the en-
semble.

In summary, we have seen that the initial scale of
learning curve is not determined by the number of free
rameters. It is determined by the number of constraints
the parameters that must be approximately satisfied to
proximate an optimal student well@17#. For the large fully
connected committee machine the two quantities can di
by orders of magnitude and this endows the machine wit
built-in capability of model selection.
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