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Multilayer perceptrons may learn simple rules quickly
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Zero-temperature Gibbs learning is considered for a connected committee machikehiditen units. For
largeK, the scale of the learning curve strongly depends on the target rule. When learning a perceptron, the
sample sizeP needed for optimal generalization scales so &P <KN, whereN is the dimension of the
input. This holds even for a noisy perceptron rule if a new input is classified by the majority vote of all students
in the version space. When learning a committee machine Mithidden units, &M <K, optimal generali-
zation requires/MKN<P. [S1063-651%98)03908-7

PACS numbegs): 87.10+e€, 05.90+m, 64.60.Cn

Supervised learning in neural networks has been studiedhitecture of the student will make it impossible to imple-
from a wide range of theoretical perspectives. In statisticsnent the teacher perfectly and such a situation shall be mod-
one may obtain bounds on the learning behavior that indicateled by considering a noisy teacher.
that the sample size should be on the order of the VC dimen- We consider Gibbs learning at zero temperature since this
sion of the network to enable good generalizafibh Under  can be shown to converge, for any teacher, to the optimal
some regularity assumptions, one may use information geatudent in the limit of large sample sig&0]. A well known
metric ideas to determine the asymptotics of the learningtrategy in machine learning is to combine the predictions of
curve in the limit where the number of training examples isdifferent classifiers. Instead of just picking a student from the
large[2]. This yields that the sample size should be on theGibbs ensemble, we thus also consider classifying a new
order of the number of free parameters in the architecturanput by the output of the majority of the students in the
and for feedforward networks with threshold units this is theGibbs ensemble. Under suitable assumptions on priors
same as the VC dimensiomup to a factor that is at most (which do not hold in the present cas¢his is the Bayes
logarithmig [3]. In particular, both approaches suggest thatalgorithm[11].
the sample size must be increased with the capabilities of the More formally, let () be the set of inputs ané be a
learner and that this is quite independent of the rule that is tprobability distribution on Qx{—1,1} representing the
be learned. (stochastit teacher. For a binary functiorfe{—1,1¢

In statistical mechanics one has to make rather detailedle may then define the generalization erreg(f)
assumptions about the learning problem, but can in turn cal=(6(— of(£))) ;) as the probability with respect # that
culate the learning behavior exactly in the thermodynamicr=+f(&) for an input/output pairg,o). Let F, a set of binary
limit. While this has given rise to important qualifications to functions, be the class of students gnd probability distri-
the above theories, e.g., the discontinuous transition to pebution onF, representing our confidence in the generaliza-
fect generalization in Ising networks,5], the above scaling tion ability of a student. Denote by(¢,a) =(8(af(£))); the
of the learning curve has to date been observed in statistic@kobability with respect tq. that o= f(£). We then obtain a
mechanics as well. Indeed, generic arguments that the scalgassifier that averages over all students by sethinge)
of the learning curve must be set by the number of free=sgrfr(£,1)—r(¢,—1)]. The generalization error of this
parameters in the thermodynamic limit have been broughg|assifiere.,sand the average generalization eregg,,com-

forth in [6]. mitted by simply sampling fronx. are then
However, in some practical applications, the generaliza-
tion properties of feedforward networks have been found to €smp=(€g(1))1=(r(&,— ) (£,0) »
be startlingly good in view of these theoretical expectations
[7,8]. The purpose of this paper is to point out that for a €ens= €9(N,) =(02r (£,— )= 1))(£.0) - (1)

specific multilayer network, the fully connected committee

machine, the scale of the learning curve depends strongly oBince eq,=(2r(&,— o) 0(2r (¢,— o) — 1)) (¢,o) ,» ONE haseens

the target rule. <2e€gmpand it is straightforward to construct unusual situa-
This machine is characterized B¢ weight vectorsJ; tions (for anyesmpsi) where the inequalities are tight. How-

eRN, 1J;|=1, and given arN-dimensional input it com-  ever, below we shall encounter cases whegg is much

puteSUJ(g):sgr[EiKzlsgn(JiTg)]. We shall consider a situ- smaller thanegy,, and even smaller than the generalization

ation where the target rule or teacher is a simpler committeerror of the best student in the supportof

machineog(£) with M weight vectorsB, and M <K. The Let 7 be a training set oP pairs ¢”,0") picked inde-

high-temperature limit of a related scenaritl €1,K=3, pendently fromA and assume that is such that any student

binary synapsesas been discussed[il]. Here we focus on f picked fromu lies in the version space, i.d.has minimal

the caseM <K <N since this not only is technically simpler training error=,6(—o”f(£”)). Then ey, Will converge to

than finiteK but separates the scales of having a sample size,,,, the minimal generalization error attainable # as P

of, e.g.,O(N) or O(KN). In real world applications the ar- —o. However, only in realizable cases,;,=0 does this
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imply €ens— €min- If the optimal student is unique, however, The Z® and Y, are zero mean Gaussian, with covariances
under weak assumptions ¢fiand the input distribution, the (ZFZ?)=q:°, (Y,Z)=yR}, and(Y,Y\)= . For all the
version space will shrink to a point for large and then parametrizations off and R we shall consider, one may

trivially €ens— €smp— €min- show as in[12] that the joint distribution ofZ2 and ) is
In our present case the teachferis given by the noisy Gaussian in the limiK— o~ whenM is equal to 1 or whei
committee machine is large as well. Since the covariances of & and) are
readily calculated from those @& and Y, this greatly sim-
7* oa(yE+ 11— 97 7). 2 plifies G™.

_ ) ) Combining Egs.(1) and (3) allows us to calculate the
The components of the input vectdand of the(input) noise  generalization behavior: Almost by definition the typical,

vector 7 shall be picked independently from the normal dis-jth respect to training sets, value of theh moment of the
tribution. A second source dfoutpub noise 1s due to7"  random variabler (¢,0) is given by G(™ evaluated at the
e{—1,1, which equals 1 with probability’*. Thus, fory — nical values ofg,R. These may be obtained from the ex-

= y* :1. the teacher is determinisltic and the Ie'arning Probiremal condition in Eq(3) for smalln. Consequentlyenpis
lem realizable and foy=0 or v* =5 the teacher is random.

) ST given by
For zero-temperature Gibbs learningis given by the
uniform distribution on the parameter3)(of the functions in 2% —1
version space. Thus the key quantity to consider is the ver- 1-y*+ arcco (6)

sion space volum¥ (7). Note that we shall consider only a
sample sizeP for which zero training error is achievable.
Hence the calculation of the replicated version space volum
for largeN leads to the following extremal problem:

for p=Re/\ve. HereRe=(VZ?) andv=(Z22%). In con-
trast to esmp, the generalization error of the ensemble de-
pends on the geometry of the version space. Within a replica

symmetric ansatz one finds
n
Qe
X . (7
Ve~ Qe .

¥

1 P
—In(V(T))r=extr=InG!"(q,R)+InGM(q,R). (3
N or N

Re7* X

GW=( 2H| ——=

Here the matrixq=(qf}b) is given by the overlaps of the VOe— Rg
weight vectors of the students afd=(R{) by the overlaps

between these and the weight vectors of the teacher. Wene (istribution ofx is normal, ge=(222"%), and for the
assume that the teacher has orthonormal weight vectors a'i'ﬂoical values of the order parameter§?) equals

then the entropy tern®{" is (r(&0)")z.0). As pointed out in[13], it is thus easy to
S evaluate(F (1 (¢,0))) ¢, If F is, or can arbitrarily well be
G(”):de< 1 R ) @ approximated by, a polynomial. Since this holds for the

s R q function in Eq.(1), a simple calculation yields that., is

given by Eq.(6) for p=R,//q.. However, already one step
The solution of Eq(3) will require symmetry assumptions of replica symmetry breaking would yield a much more com-
about the extremal values of and R. Subject to such an plicated right-hand side of Eq7). It thus seems very diffi-
assumption the determinant " may be evaluated by cult to perform a similar calculation oé,s when replica
recursively applying the following relations for block matri- Symmetry is broken.
ces: detf ))=deta detd—ca'b) and detM(u,v) We fir;t qonsideerl. In this case _a_site symmetric
= detu—v)*1defu+ (k—1)v]. Here M,(u,v) denotes a Parametrization ofj andR should be sufficient and we set
square matrix witrk diagonal entriesi and off-diagonal en-  Rf =r#+K andqi’=p2*/K+ &;q?". The scaling of the or-
triesv. For the more complicated parametrizationsyadnd der parameters witK is such that the contribution of and
R the calculations become tedious and are best left to a conp®” to the covariance matrix oE? and ) stays finite in the

puter program capable of symbolic algebra. large K limit. The best achievable generalization error is
The energy ternG(™ in the extremal problen®) is given ~ given by Eq.(6) for p=1.
by ~The replica symmetric theory will be sufficient fd?
=aN, when the sample size is an infinitesimal fraction of
n the number of free parameters. The resulting power laws for
Gﬁn): < 20(7* y)aHl 0(Z%) , the generalization error as—o are summarized in Table I.
- Y).Z2 Only in the noiseless case doeg,, decay toe,. For iden-

tical values ofe,,, the asymptotic value ofsy,is higher in

K the case of output noise than for input noise. The generali-
Za:K*llzizl sgnzy), zation error of the ensemble becomes minimal in all cases.
For input noise, the I/ decay of the ensemble quite remark-
M ably equalizes the decay in the Bayesian algorithm that is
V=M~ sgn(y) if M>1, optimized for this specific class of teachéts}.
=1 The great difference between the ensemble and sampling

y=Y,; if M=1. (59 may be explained quite simply. L&8=K 25,J; be the
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TABLE I. For largew the generalization error decaysdg;, as 14
da ¥ for the values ok andd given in this table. The value af;
is c;=— 2 _ dxInH(x). 12
10
Model k d
8
no noise €smp 1/3 (m—2)¥3
NEEESE 6
no noise s 23 [ o Ja(m—2)t 0 0.1 0.2 0.3 0.4 0.5
27,-5/12(;%/6 FIG. 1. Value ofa at which replica symmetry breaks. The upper

curve is for input noise, the lower one for output noise. One step of
RSB was considered, at the transition the breakpoint parameter
decreases from 1, and one of the two valueg®fis still 0 and the

Input noise €smp 0 iarccos;/z— . other is close to 1.
T min

be well described by the above theory as long asP
Input noise €ens 1 1 < arsegKN. So for finiteK only a close to minimal generali-

4y zation error is achievable in this phase. Nevertheless, the

guestion arises whether the remarkable generalization perfor-

mance for small sample sizes occurs onlwit=1. Indeed,

the analysis of, e.gM =3 cannot be obtained by a simple

extension from the perceptron case. If one-third of the hid-

den units in the student have small overlaps with the first unit

in the teacher, this will reproduce only the hidden fiBIiE,

but not its sign.

) ) ) It is not necessary, however, that all of the hidden units in

(rescaledi average weight vector of a typical student in ver-the student specialize on some unit in the teacher. Let us

sion space. Then in the limiB|— < the output of the large assume that for each teacher unit there Xifeunits in the

committeeo; is equal to the perceptron with weight vecB®r student that have specialized on it. The scala bfis set by

on almost all inputs. Furthe® becomes parallel to the the. requirement that the field produced by the specialize_d

teacher for larger. However, only in the noiseless case doesqmts should haye the same order _of.magmtude as the entire
LU ~ 1 _ . field (29), that is,\* =\K/M. This in turn suggests that

the length ofB diverge(as ). This length influences the o learning curve should exhibit an interesting behavior

performance of a single student but is immaterial for the . . N
ensemble since the specialized overlgp® are zero. when the size of the training set scalesPas «KMN. Due

We next consider the more conventional scaling of theto the broken site symmetry the calculations are rather in-

o . : ?__.__volved and we shall consider only the noiseless case in the
sample sizée®= aKN. If there is no noise, the generalization limit M— o but M<K
error vanishes. In the noisy cases up to a critical point the Settingh(i)=[i/x*], so that forh(i)<M the ith hidden

generalization behavior is the same asdor . SinCeeens  njt of the student has specialized of th@)th teacher unit,
= €min the ensemble agrees with the noiseless teacher on gj;

) - ! - ve arrive at the parametrization of the overlap matrices
most all inputs but, in contrast to the noiseless teacher, it has

zero training error. With increasing the version space a a )

shrinks rapidly and above a critical specialized correla- a_ rd/M+é8ini)Rs if h(i)<M

tions between the students emerge, ic#2=0 no longer i ra3/K if h(i)>M,

holds. While this can be seen in the replica symmetric

theory, a correct description requires the breaking of replica

output noise €smp 0 no explicit form

output noise €ens 1/2 no explicit form

symmetry. The critical valuerrsg as function of the noise is PEIM + Sy PEr+ 8;02° if h(i),h(j)<M
shown in' F?g. 1. At the @ransitioasmpincreases and, due to' qia_b: p’;‘ﬂ/\/W if h(i)<M<h(j)
the specialized correlations, the error of the ensemble will ™" b ab _ ) )
increase as well. For large the version space shrinks to a pu 1K+ 68;;q; if M<h(i),h(j).
point (g*°—1) and thuSeg,s— €smp- The asymptotic value ®

of esmpOn this scale is higher than the one found for lange

The generalization error will decrease again when the trainThe replica symmetric theory will be sufficient for the above

ing set size is on the order of the storage capacity of thé&caling of the training set size. Then the extremal problem

student, that is, on the order gfn KKN [15]. (3) has a solution witly2"=0 and where the following quan-
For large but finiteK the generalization performance will tities are of order YKM:
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1+pi*=pg’, Py’ (rd)% pEi— S,

pao-r3(r3+R3), p+p%—(ri+RHZ 2. (9

These relations imply that the average weight vector of thee

MULTILAYER PERCEPTRONS MAY LEARN SIMPLE ...

2301

For small values of the above extremal problem has the
unspecialized solution=1A=0. The generalization error is
the same as fav =K in this unspecialized pha$#6]. How-

ver, above a critical sample size~5.17, the value oh

teacher, the average of the specialized units, and the averaljié'éases from zero and it diverges with growing The
of the unspecialized units in the student are parallel. Furthef@!ue ofRs is close to one already at the transition. Asymp-

one finds
O(1/M)=1—p22+\* (22— p2P+ p22—p2D),

O(VM/K)=p3a— (R%)2, 0<¢M/K)=p2§*—p2§-( )
10

totically, one finds

21/4(,”__2)1/4 In 21/ 14
€ - — T~
smp 7T\/C—2 \/ o

wherec,= — [dxH(x)InH(X). The ensemble improves only

With these relations the typical value of the version spacenarginally on this performance, the decay in its generaliza-

volume can be obtained from

1

VvKMN

whereG, = (d/dn)G{"|,_o andG(" is given by Eq.(7) for

(INV(T))r=extraG, + %In(l— R?), (11
Rs .\

Re=2(r +\ arcsinRg)/ ,

0e=2[r (r +2\Rg) + \2arcsinR?]/ 7,

Ve=Qe+1—2/m. (12)

The value ofr =r3+\r is given by the constraint
2(r ARy POy 13
(r S)T% IR, (13

tion error being a factor 12 faster. This is related to the

fact thatr >0 for finite . While this improves the perfor-
mance of a single student, it creates a deviation from the
teacher that is common t@lmos} all students in the en-
semble.

In summary, we have seen that the initial scale of the
learning curve is not determined by the number of free pa-
rameters. It is determined by the number of constraints on
the parameters that must be approximately satisfied to ap-
proximate an optimal student wdll7]. For the large fully
connected committee machine the two quantities can differ
by orders of magnitude and this endows the machine with a
built-in capability of model selection.
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